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ABSTRACT

Two closely related algorithms are presented for
extrapolating to the limit of a'.-scalar sequente. One, the
even-epsilon algorithm, is due to Wynn; it permits system-
atic calculation of the array of Shank's transforms or, -A
equivalently, of the related Padd Table. The :other, the
even-rho algorithm, is closely related to the first and is
also based on Wynn's work; however, it has different
properties and has not enjoyed the same theoretical
development. Singular rules and near-singular rules are
developed for both algorithms to handle situations in
which adjacent tabular entries are equal or nearly equal,

A leading to zero or very small divisors. Computer pro-
grams implementing these algorithms are given along with
sample output. An appreciable amount or historical
background material is included.

ADMINISTRATIVE INFORMATION

This research was carried out under the Mathematical Sciences Research Program,

Task Area SR-0140301 (Math Sciences), supported by the Naval Sea Systems Command.

1. INTRODUCTION

1.1 PURPOSE AND SCOPE

The purpose of this report is to present two computational algorithms, called

the even-rho and the even-epsilon algorithms, for accelerating convergence of numer-

ical sequences and, in addition, to present singular rules and near singular rules

- for handling cases where zero or near zero divisors appear in the computations. Nu-

merical sequences arise in a wide variety of contexts in applied mathematics and

engineering; examples are the successive partial sums of an infinite series and the

successive outputs of an iterative process S+l = f(s ). Singular cases require spe-
n~l n

cial treatment to avoid excessive loss of significance. The computational algorithms

as given here are new but their derivation depends heavily on the work of Peter Wynn.

The singular rules and near singular rules appear here for the first time.

....
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The even-epsilon algorithm is a computational adaptation of a formula given by
Wynn (1966)i* relating adjacent members of the Padd table; thii table is a rec-

tangular array of rational functions the series expansions of which agree in a

specified manner with a given series. I
The even-rho algorithm is based on developments closely parallel to the 'above

but stemming from the reciprocal differences introduced by Thiele (1909)2 to

facilitate interpolation by means of rational functions. This algorithm makes its

debut here.

These two algorithms, although very similar,..hive different properties and

behave differently when applied to any particular numerical sequence., Five examples

of numerical sequences and the result, of applying the even-rho and even-epsilonf

algorithms to them are given in the iappendi.xes. Com'puter programs are also given.

V An effort has been made to include sufficient historical background to provide

perspective for the even-rho and even-epsilon algorithms, i~e., to 'show where they

fit into the scheme of efforts to iccelerate convergence of numerical. sequences. To

a limited extent this historical material also provides background for a companion

report, Eddy (1980) on a very successful method of accelerating convergence of a

vector sequence generated in the iterative solution of a system of linear algebraic..

equations.

1.2 SEQUENCES AND SERIES

Numerical sequences and series which must be evaluated numerically arise in

many contexts in applied mathematics. A sequence may be the successive outputs of

an iterative process

s n f(s n-) (1.2-1)
n n-

or it may represent the successive partial sums of a power series

n

an - t (1.2-2)

j-o

*A complete listing of references is given on page 53.
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Conversely, with any numerical sequence a 0 1 s2,.., there can be associated a

potter series

S(t) - s+ (s -8 )tJ (1.2-3)
A-I

having partial sums

n

which, for t 1 1, collapse to the original sequence:

S (1) w s (1.2-5)n n

Such a sequence or series may converge with sufficient rapidity to be computa-

tionally useful as it stands; it may converge so slowly that acceleration techniques

are required; or it may diverge so that special techniques are required to determine

the antilimit from which it is diverging.

1.3 CLASSICAL BACKGROUND

Ever since infinite series came into use about the time of Newton, the problem

of accelerating the convergence of slowly converging series, or of assigning a value

to a divergent series, had to be dealt with. Various methods for doing so, deve-

loped during the 18th and 19th centuries, are discussed in, for instance, Knopp's
4classic treatise, Knopp (1951), especially chapters 8, 13, and 14, and also in

5Kline (1972) , chapters 20 and 47. Anong the best known of these methods is the

Euler transformation

n Z (- 1 )n (An )/2n+1-

n=O n-O

3
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Swhere Ana0 is the n forward difference of the a's beginning at a M. Another well-
known inethod which is still in use is the Euler-Maclaurin summation formula

N f B 22rn (2N-1) (2N-1 )
f(n) f (x)dx - (f(N)-f(O)) + n ( (f(N) -f(0) ) (1.3-2)

where the B are the Bernoulli numbers.
2n

Toward the end of the 19th century two new methods of dealing with the conver-

gence problem were developed. The first, called summability theory and associated

primarily with the names of CesAro and H8ider, employed various "means" w.hich were*1
linear combinations of successive partial sums. These means proved to be of great

theoretical value but seem to be not very useful computationally. The second new

method involved the use of rational functions, either as continued fractions or as

the ratio of two polynomials; it has largely supplanted other methods for acceler-

ating convergence.

The way was opened by Stieltjes who, in a series of papers beginning in 1889,

exploited the idea of converting the infinite tail of a series (the part left after

removing a partial sum) into a continued fraction. Since the doma.n of convergence

of a continued fraction is quite different iron that of a power series, this tech-

nique often yields useful reults. See Wall (1948)6.

Soon thereafter came Pad6 who, in his 1892 thesis, studied the relations

between a given power series and the rectangular array of rational functions (later

known as the Pad4 table) related to it as follows: the rational function in the
th th

p row and q column has numerator of degree p and denominator of degree q and

its power series expansion agrees with the given series through the term of

degree p + q. (Actually, the array treated by PadA was the transpose of this one,

but this description conforms to current usage.)

To evaluate the limit of convergent series, or the antilimit of a divergent

series, one evaluates the array of functions in the Pad& table and looks for conver-

gence down the columns, q - constant, or along the main diagonal, p - q.

For purely numerical work, the most effective way of accomplishing this eval-

uation is with the epsilon algorithm (or the even-epsilon algorithm) described in

Section 3.

. 4



Considerable theoretical work has been done on Pad6 approximation during the

past two decades; the present state of the art is summarized in Baker (1975).7

Earlier work is described in the standard works on continued fractions: Perron
86(1929) and Wall (1948).6

By far the best known and most widely used example of summation by approxima-

tion by a rational function is the simplest possible case: the rational function is

merely the usual expression for the sum of a geometric series with the common ratio

determined from three successive partial sums. This simple function has been dis-

covered and used by various authors, most notably Aitken (1926)anShks(9)

and (1955). Because of the second difference in the deniominator, Aitken called it

the delta squared process. This extrapolation process can be written in any of the
i!!.,following equivalent forms:

An S 1 - 2Sn- n28n+a

M Sr- (S )(SnS )/(S+M2S +Sn+l-'Sn) -n2nns n-)

a =Sn+_ (S n+l'Sn) /(s n+l2sn+s)n-)

n+l n-I n (1.3-3)
Sn+ 2s + s
n ~ n n-I A•

( 1 (
An s s -s s ~snn n n+l n n n-I

Expression (1.2-3) is the form usually given; (1.2-4) is displayed because it is a

special case of the even-epsilon algorithm to be described in Section 3.

For a comprehensive but concise account of acceleration methods currently con-

sidered to be of interest, especially the epsilon algorithm, see the lecture notes
of Claude Brezinski (1977)12 and also his textbook, Breznsk (1978).13

5



2. THE RHO AND EVEN-RHO ALGORITHMS

2.1 THE RHO ALGORITHM ]
The rho algorithm was so named by Peter Wynn who, in Wynn (1956), the first

of two important papers published a few months apart, called attention to the useful-

ness of reciprocal differences for summary series and for extrapolating to the limit

of sequences.

Reciprocal differences, denoted by p, had been invented a half century earlier
2

by Thiele (1909) to facilitate interpolation by rational functions. The inter-

polating function appears as a continued fraction which is the analog of Newton's

polynomial interpolation formula based on his divided differences. Analytical prop-

erties L. hese reciprocal differences were investigated in the ensuing years by
115

N'rlund whose famous text, N'rlund (1924), remains the definitive treatment of the
16

subject. A similar treatment is found in Milne-Thomson (1933).

The reciprocal differences corresponding to a given set of arguments {X and
n

function values (s } are defined recursively:
In

n n+ Xn+m nX
Pm Pm-2 n+l 

(2.1Pm-I "M-1

n nPo° = sn P -1 0 (2.1I-2)

They are customarily displayed in the rho array a- shown in Figure 2.1.

' 0 1

T=S. .. 1 2 3, I1 $x2 1
X2 0.:•.$2. 2,. P X3 - X2 .,' , -" " P2 Po) '

x *x
3 2 3 4 2

X3  =3 " 2 P 0 3 2
3= x4 "x3  P I/pI

14 1 ;3 3 4
3 P0 4 4 3

4 5 4 1 1
5 1 S s5 .s4

55X5 PO S5

Figure 2.1 - The Rho Array (Old Notation)

6



-7.

It will be seen that any particular p depends explicitly only on three pre-

viously calculated rho's lying at the other three vertices of a rhombus. However,
n - '

implicitly p depends on all m+lof the pairs (X , S), (X
Sm n n n+1' n+l nm

n+m )
Systematic computation of the rho array can proceed according to either of two

patterns: _

ncolumnwise - all of the input sequence p s then all of the first column
n

p,, etc., or
n

by upsloping diagonals - as each new Pn = sn is obtained, calculate in turn
n-lI 10 i

Pi , 'n-_I This latter pattern has two distinct advantages,

it reduces storage requirements since calculation along any upsweeping diag-

onal requires input from only itself and the immediately preceding upsweep-

ing diagonal, and

* convergence can be monitored in all columns involved on each sweep so that
Li

the basic input interation can be halted as soou. as possible.i

The property of reciprocal differences which makes them so useful forextrapVo,,,

lating to the limit of a sequence (or, equivalently, for summing a series) is that.,,

if the general term of a sequence is given by a rotional function of the term index,

(ordinarily X=n) in the form

+k X

a~~~ X' + X- + +

akX n ak-l n 1n +. ia 0

n Xk + bk- xk- + "'+ b ,Xn + b0 ;'"7'

then

n ak for n 1 1, 2, 3, .•. (2.1-4)

Since obviously

lim s a (2.1-5)
n k

n

it is clear that calculation of the even ordered reciprocal differences provides a

systematic way of finding the limit or antilimit of such a sequence. If relation

7



(2.1-3) is not exact, but is an increaq;tngly good approximation as n gets larger,

then there will be convergence in the 2kth'columnh of the rho array.

The rho algorithm, in contrast to tihe eps o, algorithm discussed in Section 3,

seems to have received very little attention in the-literature since the publication
14

of Wynn (1956) and convergence .heorems for it are lacking. It has, however, been17 18 1

touched upon several times by Brezinski (1971),, (1972), and especially (1977).12

2.2 THE EVEN-RHO ALGORITHM

Since only the even-ordered reciprocal differences are useful for the summation/

"extrapolation process, it would be desirable to develop a recursion relation involv-

ing them alone. This indeed can be done and the result is Equation (2.2-4) which, to

the best of the author's knowledge, appears here for the first time in print. The

novelty is, however, trivial since the pattern of elimination which leads to this

recursion relation is precisely the one employed by Wynn (1966) to develop the even-

""epsilon algorithm from his earlier epsilon algorithm. In order to make this report

more self contained, the derivation is given here for the even-rho algorithm.

Consider a rhombus shaped portion of the rho array as shown in Figure 2.2.

7? n+12 k12kP-

2 kk +kI

,2k ,2 2k 2k + 2

•',J~~ ".."''.'.. On + I < Dn P

2k- 1 2k + 1

2k

Figure 2.2 - A Portion of the Rho Array

The rho recursion relation (2.1-i), now for convenience rewritten

n n+l - 2k+n+- n (2.2-1)
P2k+1 p2k-1 n+1. n

,2k - 2k

gives
n n+1 _X.... n+l- n.

2k+1 -2k-i (2k+n+-nl2k )Aj

8



and, with n-I replacing n,

n-I n ,,n n-i1
2k+1 2k-i A -X2k~

Subtraction results in

4 • -X X -X
(n n-i (n+1 .1n 2k+n+1 n -2k+n v- I
~2k+1fP2k+1l -~ 2k-l1 2k-1l n+l n "n n-Il

P 0

Now Equation (2.2-1) can be used to replace the ordinary difference on t,.e left

with reciprocal differences;

2k+n+l n-I 2k+n n 2k+n+1 n 2k+n n-i
n-I n , n+1 n+1 n n n-1(2.2
02k+2 '2k P2k -2k-2 2k -2k P2k .- "2k

- t

f Note that on the left side the differences lie in a horizontal directio n whe
the right side they lie in .vertical direction.

For ordinary use in summation of series or extrapolation of sequences it is
natural to take

X n (n .1, 2, 3, .. ).(2.2-3ý

n

This substitution yields on the even-rho algorithm

2k+2 2k 2k+1 2k+n n-
n-i n " n n+l n+l n- n n-I (2.2-4)

P 2k+2 - P2k P2k -P2k-2 P2k - P2k P2k - P2k

n s (n 1, 2, 3, .. )(k 0, 1, 2, 3, ..

- n
It is not necessary to specify the r since the only term in which they would

appear has k-0 in the numerator.

9
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There is now a cross pattern, shown in Figure 2.3, which corresponds to the

rhombus pattern associated with the ordinary rho algorithm.......

2k

n +1 n1 n1

2(k -1) 2k 2(k + 1)-

n + 1.
2k

Figure 2.3 - The Even-Rho Pattern (Old Notation)

2.3 NEW NOTATION

The notation P n used so far has corresponded to that used by Wynn in hisThe otaton 2k

later papers on the epsilon algorithm-and also by Brezinski. The lower index, m or

2k, denptes the column, and the upper index, n, denotes the downsloping diagonal on

which it lies. The latter thus emphasizes the first member of the input sequence,

s , which enters into the calculation of n (see Figure 2.1).n 02k

However, for a computational algorithm which sweeps through the array along

upsloping diagonals, it is much more convenient to have the upper index denote the

upsloping diagonal. Hence it is constant along each sweep, and thus emphasizes the

last member of the input sequence, s , which enters into the current calculation.
pHenceforth the upper index denoting the upsweeping diagonal will be p instead of n;

they are related by

p = n + 2k (2.3-1)

In this notation the even-rho array appears as in Figure 2.4.

The even-rho recursion, relating the five elements. lying on a cross pattern,

appears as in Figure 2.5.

10

U m '5



2,' . ,

2 po=s. 3'p
2 2

3 p ~s 45

4 p4 5 6 7

-. 56 75 LI .s- 0

7

Figure 2.4 -The Even-Rho Array (New Notation)A

P-1~

p1
2k

pp. 1  p+ 1

p+ 1

2k

Figure 2.5 -The Even-Rho Pattern (New Notation)



Equation (2.2-4) becomes

2(k+l) 2k - 2k+1 - 2k+1 (2.3-2)
p+1 p p p-1 p+l p p-p1
2(k+) 2k -2k 2(k-1) 2k 2k 2k 2k

(p - 2, 3, 4, .•; k - 0, 1, 2, ... [(p-I)/ 2 ])

0 p

The new notation has an additional advantage--mainly esthetic, to be sure--

in that the upper indices in Equation (2.3-2) behave properly instead of running

F thbackward in the horizontal differences as they did in the old notation of Equation
(2.2-4).

i" 2.4 COMPUTATIONAL ALGORITHM

The two terms on leftside of Equation (2.3-2) have the same structure,

that of principal parts of reciprocal differences taken in a horizontal direction.

Likewise the two terms on the right are principal parts of reciprocal differences

taken in a vertical direction. Each such term is used twice, once on each of two

successive sweeps along upsloping diagonals. It is therefore advantageous to define

the auxiliary quantities

-p 2k (2.4-1)

p p-i
P21 - P2(k-1,ý

2k+1 (2.4-2)
k p p -i

2k - O2k

In terms of these quantities, the equations for calculating the ppk along an

upsloping diagonal indexed by p, as in Figure 2.4, become

12



-' 2kp_!(p = 2, 3, 5, .. ,) (2.4-3)

O2k °2k

P P- + VP - •-' (p , , , (.4-4)

p !-I +o - ( 3  4
2(k) 2 2P p = 3, 4, 5, ... ( 2.4-5)

02(k~l) wk
k+1

4]

(K 0, 1, 2, ... [(p-l)/21, p - 2, 3, 4, ... ) (2.4-6)

ii

with initial conditions

P
0 p

(p - I 2, 3, (2.4-7)
•HP 0A

0 o

onySince calculations along any upsloping diagonal, indexed by p, require as input

only previously computed values for the same p and also for p-1, it is necessary to

maintain six arrays: three for the currently computed values of V, H, and rho, and

three similar arrays from the previc*s (p-i) sweep. Their maximum length, L, is re-
lated to P, the maximum value of p, byi

L- [(P+1)/2]

where Ex] means the greatest integer, n, satisfying n < x < n+l.

3. THE EPSILON AND EVEN-EPSILON ALGORITHMS

3. 1 SHANKS' TRANSFORMS AND WYNN'S EPSILON ALGORITHM

The epsilon algorithm was so named by Peter Wynn who introduced it in Wynn
19(1956) as a practical method of calculating the array of transforms e (S) nmn

13



discussed by Shanks in his thesis, Shanks (1955). The latter is credited by Gragg
20

(1972), page 2, as being one of two principal sources of stimulus for modern inter-

est in Pad6 approximation and related topics. Actually, an earlier version, Shanks
10

(1949), had attained unusually wide circulation for an internal memorandum and was

widely known among numerical analysts in the early 1950's.

Shank's considered sequences of the form

m

k-1

- which arose, for example, in studying the decay of a mixture of radioactive sub.-

stances. If all rk are distinct and satisfy

IrkI < 1 (3.1-2)

then

lir a s-an - (3. 1-3)
nm

so that a is the quantity of interest in this context.
0

Two properties of the sequence (3.1-1) should be noted:
th(1) each s is the sum of the n partial sums of m different geometric series;

n
m

(2) s -a 0 -a akrk has the form of the general solution of a homogenous

k-i
linear finite difference equation with constant coefficients

mZ C (Sn-ao) - 0 (n 1, 2, 3, ... ) (3.1-4)
j n+j- oJ.0

where the rk are the roots of the characteristic equation

14



C r (3,1-5)

J-01

The auxiliary condition

mI

S0 0

is required to exclude the singular case in which one of the root's is unity.

Either, E.quation (3.1-1) or Equation (3.1-4) 'can be regarded as characterizing

the sequences to which the theory of this chapter applies.

Shanks &ave an array of transforms

S~s Sn~ •""s
n n+1 n+m

n+1 n n+2 n+ln+m+1 n+IA

*A

- s
n+m -n+m-1 n+ 2 m n+ 2 m-l

e ) - 3.1-7) (s
m nt

s + -s s - •' • S +min+1 n n+2  n+l -l+m+l

a n+m -s 1+m-l1 n+2m sn+2m-1

15



.. .... .. ...

for estimating ao, the limit (or antilimit) of the sequence in terms of 2m+1 succes-

sive elements, n, 8+1 .. n+2m Here, n denotes the starting point in the

sequence and m denotes the order of the approximation as in Equation (3.1-1). In

particular, for m-l this yields the well known Aitken delta-squared extrapolation

4I formula already shown in Equation (1.3-3).

The expressions (3.1-7) given by Shanks, the ratio of two determinants of Rankel

type, become practically useless for direct computation even when m. is still a small 4

integer, e.g., m-4. This difficulty was soon surmounted by Wynn (1956)19 who showed

that, with the aid of some new intermediate quantities, a very simple recursion rela-

tion holds.

'He set

C2m "em(s) n

(- •(3.1-8)

C n+1/e (s sn+!'Sn ni -

and showed that they satisfy

n n+1 I
n k+1 £ k-I + n+l -n Ti

k "k

k-O, 1, 2, 3,... (3.1-9)
n-O, 1, 2, 3,...

en- =_ 0.o
0 n -1A

This is the epsilon algorithm; it is very similar to the rho algorithm, Equation

(2.1-1). Correspondingly, there is the epsilon array shown in Figure 3.1.

16
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4I
n kO 0

2 ~o k 1 -2
2 C $2<2 02 1

1 S3 $21

3 3 S Cm -3 2 3 2

4 r4-" 7S
"o 3 . I- i I 2 0 3. 2

= 1 " 1
1 s34•s3

4 0. S4 A

Figure 3.1 - The Epsilon Array (Old Notation)

Systematic comrutation of this array can proceed either columnwise or along up-

sloping diagonals as was discussed for the rho algorithm in Section 2.1.

The relationship between the array of transforms (3.1-7) and the rational
10 11

functions of the Pad6 table was pointed out in Shanks (1949) and (1955); the

same relationship, but in the language of the epsilon array, was treated in Wynn
21 th

(1961). Specifically, let s be the n partial sum of a power series
n

n

s -• Czi (3.1-10)
n

j=O

Substitute Equation (3.1-10) into the expression (3.1-7) for the e (s) trans-
m n

form; then in both numerator and denominator multiply the first column by z , the

m-I 
0

second column by z , ... the last column by z ; cancel out the powers of z

in corresponding rows of numerator and denominator. What is left is very clearly

the ratio of a polynomial of degree (n+m) to a polynomial of degree m:

17
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c c

*. . . 0nn~ 0 n~

Cn+ On+ 0n+2nm

e (a

2 z 2

n+l n+2 m

cn+m Cn+m+1 In+2m

"The converse of this result was given by the present author in 1951. In unpub-

lished working notes, he showed that a systematic construction of rational functions,

whose power series expansions agree as far as possible with a given power series,

leads to the e (a) transform as given in Equation (3.1-1l).
m n

3.2 THE EVEN-EPSILON ALGORITHM

As with the rho algorithm, since only even-ordered epsilons are useful for

extrapolation, it would seem desirable to eliminate the odd-ordered epsilons and

arrive at a recursion relation involving only even-ordered epsilons. This elimina-
1

tion was accomplished by Wynn (1966). The details will not be repeated here

since they have already been given in Section 2.2 on the rho algorithm. Likewise,

the arguments for changing to a new notation, already given for the rho algorithm

in Section 2.3, will not be repeated here. Suffice it to show in Figure 3.2 the

even-epsilon array in the new notation:

18



P k-O k-1

o 3
2 e 2 3C

3 4 .

3 c 330 2 4

0 5
[.7

6 co 6 ~ 2

7 7

E Figure 3.2 - The Even-Epsilon Array (New Notation)

Any five entries in this table, lying on a cross pattern as indicated in Figure

3.3,

tC PII
2k

p-1p pP+I

2(k - 1) 2k 2(k + 1)

i. c:P+1

C
2k

Figure 3.3 - The Even-Epsilon Pattern (New Notation)

are related according to Wynn's formula (Wynn (1966), page 266)

I I 1 ( 1
SCp p-1 p+C k p p-1

£2(k+l) - £2k £2k £2(k-1) c2k " c2k €2k -2k

19



i

(p a 2, 3, 4,...; k-O, I, 2 ,...I(p-I)/ 21)

a 2 (p *1, 2, 3,...)
o 2 ,

This is the recursion relation among his transforms which Shanks came close to but

never actually attained.*

Comparing this expre83ion, Equation (3.2-1), with that for Aitken's delta-

squared process (Shanks' ea process) shown in Equation (1.3-4), we see that a
quantity EP given by

k 2k 2k '2k 2p (32k2

is also given by

=p~ p p ~(3.2-3)
k - 'P2k '2(k+1) 2k 2k 2(k-1)

That is to say, at a given location in the even-epsilon array (Padd table), the

same result is obtained by applying the delta-squared (ed) transform either

vertically or horizontally.

3,3 COMPUTATIONAL ALGORITHM

The two terms on the right side of Equation (3.2-1) have the same structure,

that of principal parts of the next higher odd-ordered epsilcns (see the epsilon
' recursion relation, (Equation (3.1-8)), the differences being taken in a vertical

*Oral communication from Shanks.

20



direction. 'A similar remark applies to the two terms on the left side, the differ-

ences being taken in a horizontal direction. This:observation leads to the defini-

tions

k £P C- 1

2k £2(k-1)

Vk~0 p 33-ý2),
k 2k P- 1

2k 2k

In terms of these quantities, the equations for calculating the ep along2k g

an upsioping diagonal indexed by p, as in Figure 3.2, become

VP (p 2(p 3,4.5.. .).33

2k C2k ~ 2 ,4.. 333

(p 3,4, 5ose)(3.3-4)

p P-1 1
C2k1 C2 + ~ (p =3, 4, 5,...) (3.3-5)

k+1

(k-O, 1, 2p3,. L %p-1)/2 1, (p =2, 3, 4,...) (3.3-6)

with initial conditions

0 p I(p -1, 2, 3,...) (3.3-7)

Note that, for k-0, Equations (3.3-3) and (3.3-4) together yield the Aitken delta-

squared transform, Equation (1.2-4).

21



As in the case of the even-rho algorithm, it is necessary to maintain two arrays

for each of V, H, and epailon' one each for the current values of V, H, and epsilon

along the upsloping diagonal indexed by p, 'and one each f6r the last preceding diag-

onal indexed by p-1. Their maximum length, 1, is again'related to P, the maximum
value of p, byqr

L [(P+1)/2] (3.3-8) A

where [x] means the greatest integer, n, satisfying r < x < n+l. ..

4. SINGULAR AND NEAR-SINGULAR RULES

4.1' NEED FOR SINGULAR AND NEAR-SINGULAR RULES

Computational algorithms, such as the even-rho and even-epsilon algorithms'and

also their ancestors the ordinary rho and epsilon algorithms, in which division.

plays a major role, are vulnerable to troubles.arisipg'from attempted division by A

zero (the singular case) or by a number which is very small in magnitude (the near- M.

singular case). These situations are nuisances'.but need not stop the calculat'ions;

instead, one can use special formulas called singular rules for .a zero division or

near-singular rules for a near zero divisiQn.

The near-singular rules will be derived for the even-rho algorithm., Trivial

modifications then yield the near-singular rules for the even-epsilon algorithm.

In either case the singular rules are then an obvious, limiting case of the near-

singular rules.

Both singular and near-singular rules for his epsilon algorithm were given by
22 23

Wynn (1962) and (1963). He also gave a related discussion for the even-epsilon

algorithm in Wynn (1966).'

4.2 NEAR-SINGULAR RULES FOR THE EVEN-RHO ALGORITHM

A glance at the computational algorithm, Equations (2.4-3) - (2.4-7), reveals

two places in which a small' division may arise: the first is in the computation of

VP, the second inthecomputation of P In both cases the effects of near•: .k' th eodi te2op~to f (k+l)"

singularity are felt at several neighboring points encountered later ("down-stream")

in the calculations. It is interesting to note, in both cases, instances wherein

22
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very~large numbers cancel out by subtraction; they cancel exactly to within the accu-

racy *of the approximations used. These are underlined in the formulas in which they -

Occurs

Treatment is by a first order perturbation me'thod! the small divisor, d,..is

0assumed to have the following properties: .(

t(2) 1/IdI >> any other terms added-to it I .(4.2-1)

j(3) d2  0, i.e., terms in d2 are negl~igible I.: ..

The simpler case will be discussed first.ý Suppose that'" in the calculations!

associated with the index values p and k,

Hk+l k Vk Vk

where d-satisfies the critei~ia Just, gi'?en. Then, frcom Equatioh (2.'4-5), [
p2k1 p-I + 2k+2 2k+2 (4.2-3)

1kI~

and from+ Equation (2.4-3) ,

VP2k+3. (2+3 d (4.2-4)
k+1 p2k1 -. 2k+2/

P2(k~l) 2(k+l.)

On the next following upsloping diagonal, indexed by p+l,

= p+1 2k+3 / 2k+3 d (4.2-5)
kl +Ip \2 k+ 2/

P2(k+1) - 2(k+1)

N3+ H + -V 1  d- 2 (2+ d - d (4.2-6)
Hk+2  , k+1 ~ ~ k72k+2 / ý2k+2/ I

p+l p j2k+4 p-i 2k+2 (2k+4) (2k+2) - +0 (427) 2(k+2) P2(k-I-) p+1 Hfl 2k d (2k+4)-I P 0 (.27
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%
4

?.

These results are summarized graphically in. Figure .4.1. .

2k + 3.' •
v = .ý d .. .2k + 2

P (2k +2)'/d

p 1 
p .( 2 k + 2 )/p + 1p

2k 2(k 4 2) 2k

H d 
k< 1\

H~d 1 +

•'' "

iF .'. 
.

0 lispL" "... "I i"'" .;"

•'{ " , ~2k + 3d '.

Pi+ 0 :'0 1+
k k+1 k+2

Fi.gure 4. 1 - First Case of Near-Singular Rules.
for the Even-Rho Algorithm.

The corresponding singular rules are now trivial: for d = 0,

P+
Vp,. VP2 (HPl) " 0 (4.2-8) :
k+ l kp- k+1 k+2

•2(k+1) =P (4.2-90)

24
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'A more complicated a ituat ton A ,is ie s i f a newl y calcuLatfd P' is alos eqa
directly above ~2k ms qato diree t'aoeitin'the ev&ev-r~ho 'array:

[ ~(4. 2-12)

k d

.andq. .un:(4r the 'rvos~u~i1psfabout e. leads ~othe follow-
ing approximat-ions: .-

lip .4p-l VP V- -. .

"p-i. (4.2.&13)

PP 2k + 2 2k-2 d(.21a
1k+1.

Pp+ d(4.2-14b)
' ~k 2k+1

~'2k +( 4.2-14c)

vk

Along the nlext upsioping diagona4, Andexed by p+l, the approximations become

li+ lp + p P V 2k+1 42-5
k + k k k -k d (.-5

25



pp+ p 2(k+) p 2k+2
p 2(k+) P ~k " 2k 2•-- d (4.2-16a)

2(k+1) 2k + 2 2+
k+1

p-1 d
"0p-i (4.2-16b)

p- 1 
_ " (4. 2-16c)

2k Vp i

vp+- 2k+3 2k+3
k 2(+1 (0 p pP2(k+l) p2(k+1) 2k 2k+I d-2k 2k+1-

2(k2) 1

m . (2k+l) = _ VP (4.2-17)dk

H+ +I V+Plv (4.2-18
+2 k+i k+l k+ - P+I (4.2-18)

p +l PP 2 (+ 2 p 2 (k.+22(k+2) 2(k+l) + " p2(k+l) - p (4.2-19a)

2(k2)HP+1 2(+1
k+2 k+1

p-I 2k+3 2k+4 p-i 12kp + - -- p-- (4.2-19b)
2(k+1) + P 2(k+l) VP

k+1 k+1 k+1

Still another upsloping diagonal is also affected, that indexed by p+2:

p+2 _p+l vP+2 . p+lýý_ vP +2 + .V p+2
2 Hl+l + - + + VP (4.2-20)

Hk+2 k+k1 k+1 k k+1 k k+1

26



p+ p1 2(k+2) +1 2 (k+2)-p+ =p+I 0P p +l (4.2-21a)
P2 (k+2) 2 (k+1) + p+ 2  P2 (k+1) + Vp+ 2

k+2 k+1

p+2 2k+3 2k+4 p+2 + 1 (4.2-21b)
"2 (k+1) Vp+ 2 + 2  P2(k+l) vp+-

k+1 k+1 k+1

Again, the corresponding singular rules are considerably simpler: for d - 0,

p-1 P p+l

PP( 0  P Ps(+l) 0, say; (4.2-22)
2k 2k 2(k+1) 2(k+1)

p p+l p p~

VP Vk+l 1"kp+1 "Hp+1" . (4.2-23)
k+1

p+2 2(k+2)

° 2(k+2) (4.2-25)
2(k+2) P2

Vk+1

In Figure 4.2, the very heavy dots indicate those tabular entries of rho or

epsilon which are involved in the second case of the near-singular rules. Heavy

bars between the heavy dots indicate very large values of the corresponding H1 or V;

these values become infinite in the singular case.
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I
In the first case of near singularity, let

-P-' + V -1 d (4.3-2)

where d meets the restrictions of Equation (4.2-1). Then Equation (3.3-1), the

definition of H for .the even-epailon algorithm, gives

2(k+.) 2k + Hp . (3
, k+l

and Equation (3.3-2), thb definition of V, gives J

1±k V ,d (4.3-4)

. (k+l) 2(k+1)

On the next upsloping diagonal, indexed by p+l,

•-::" .p + l 1 "i1=- d (4.3-5)
k+l p+l -P

2(k+1) 2(k+1)

Hl -p~ VV d -2d =-d (4.3-6)

k+2 k k+l k+l

p+p EP p-1 I I p n-
p+I = +' - c (4.3-7)2(k+2) 2(k+) 1+ 2k d d £ 2k

Hk+2

These results are summarized in Figure 4.3:
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V d

(. -1 Vdm

2 f + 2) 2k,

•.• I. H -. d « 1 -, -.• ..

i..i- _

H* A

V A

k k + k + 2

'Figure 4.3 - First Case of Near-Singular Rules
for. the Even-Epsilon Algorithm.

The corresponding singular rules are, for d=0.,

VP+ VP HP H 0 (4.3-8)
k+I k+1 k+1 k+2

/:;'. EP (k[.= =(4.3-9)

2(+1)

(4. 3-10
£ 2(k+2) '2k (4.3-10)

The second and more complicated case of near singularity arises when a newly

calculated E2k is almost equal to P2k directly above it in the even-epsilon array:2k diecl

£2k - d (4.3-11)

30

•-- ," . ..j



This configuration gives immediately

k d (4d3-la)

I and, under the stated assumptions of Equation (4.2-1) about d, leads to the following
approximations.,...

RP 1 HP 1  P v p - (4~.3-13)

CP C - p-i ep4 . •
2(k+l) 2k p +d (4.3-14)

k+1

V Along the next upsloping diagonal, indexed by p+l, the approximations become

P•" P. 'I+ Vp VP I

-. p+l V (4.3-5)
I i k + h k k d

2(k+i) 2k 2k 2k (4.3-16)

k+1

I _____ -VP (4.3-17)k+l C P+l p -p d -P d -
£ 2(k+l) 2(k+1) 2k 2k

Hk+1 = Hp + Vp+l VP • (
-+2 k+ I k+l k+1 k+l (4318)

Cp+l Cp E1 p 1439£2(k+2) -£2(k+l) +~Ti H P~ 2(+1 VP3-9

k+2 k+1

PI
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Still another upsloping diagonal is also affected, that indexed by p+ 2 1

I$Z p + VP+ 2  VP+ 1  'I - vp+ 2 + V -p+ 2  (4.3-20)

I& Uk+ k+ k+ +1 (4.3k+0
•+2 'k++ + -k+I k+1 k+ , k+-

p+2 p+I 1 I p+l 1 +.--- (4.3-21)2(k+2) 2(k+l) + +2  2(k+1) p+2
Hpk+2 Vk+I .•

X The corresponding singular rules, for d -O0 are

Pp-1 P -p+
2k '2k 2(k+) 2(k+1) - , say; (4.3-22)

- p+1 p p+1

V;" V -H H+I ,H (4.3-23)
+ k+1 k+I

+2 (4.3-24)
2(k+2) V

k+1

p+2  1 (4.3-25)€2(k+)" + p+2-'
2(+2)

k+l

32
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5. IMPLEMENThTION OF THE ALGORITHMS

5.1 COMPUTER PROGRAMS

In order to carry out computational experiments, a small package of computer

programs was developed. The even-rho algorithm, as described in Section 2.4, was

implemented as subroutine EVRHO in CDC FORTRAN Extended (essentially FORTRAN IV).

Similarly, the even-epsilon algorithm described in Section 3.3 was implemented as

subroutine EVEPS. In addition, a merged version of these subroutines, called

TANDEM, was written to take advantage of the fact that they were almost identical,

differing only in two lines of coding. The price was to rename most of the inter-

mediate quantities and to double the amount of storage required which was trivial.

These subroutines did not incorporate the singular rules or near-singular rules

described in Section 4 because they were written before the need for near-singular

rules was perceived and because the necessary modifications would have been relatively

complicated. Protection'was built in, however, which aborted computations wheneveri a divisor became too small.A

Each sequence to be extrapolated requires the writing of a brief subroutine SEQU

to calculate the successive numbers of the sequence. Five examples are listed in

Appendix A. In each case the sequence is identified in the included comment cards.

In addition, there was an executive routine TDMCHK to perform the usual chores

, of calling subroutines and handling output.

Listings of all of these programs are given in Appendix A.

5.2 NUMERICAL EXAMPLES

Corresponding to each of the sequence generating subroutines SEQU listed in

Appendix A, is an output page in Appendix B which shows how EVRHO and EVEPS

performed in that sequence. As might be expected from the theoretical discussions

in Sections 2.1 and 3.1, these two algorithms performed rather differently, one being

superior to the other for any particular sequence but neither being consistently
superior for all sequences. In the fourth example neither performed very well.
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APPENDIX A

LISTINGS OF COMPUTER PROGRAMS

IDMQHK: Control routine

EVEPS:, Subroutine for even-epsilon algorithm

EVRHO: Subroutine for even-rho algorithm

TANDEM;- Merged version of EVEPS and EVRHO

SEQU: Sequence generators for:

(1)) s - (1+1/n)n

n

(2) s = k-1 /k
n __

k=1

~n
i2

(3) s - 1/k2

k=1

S(4) s n First difference of logarithm of Turning condition number for

leading n x n segment of the Hilbert matrix. Theory from Todd

(1954),24 data from Savage and Lukaes (1945). 25

(5) s = First difference of logarithm of Turning condition number for
leading n x n segment of the Hilbert matrix. Theory from Todd,24 2

(1954),. data from Fettis and Caslin (1967).26
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PROGRAM TDOCHK 73/7' OPTaO ROUNDwt-*/ TRACE FTN 4o6#120

PROGRAM TONCHKIINPUT, OUTPUTt TAPES x INPUT, TAPE 6 a OUTPUT)

SEXERCISE SUBROUTINE TANDEM FOR CALCULATING BOTH EVEN ORDERED
C EPSILONS AND EVEN ORDERED RECIPROCAL DIFFERENCES FOR VARIOUS .

5 C INPU.T SEQUENCES, SN.+ THE LATTER ARE DEFINED BY A SEPARATE
C SUBROUTINE, SEOU.IL

C THE 'QUANTITIES ENEW, EOLO, AND' RNEW, ROLD ARE FOR USE lIN TESTING
C FOR CONVERGENCEt IF SO OESIRED.

••C NS IS THE NUMBE OF P 0e S• BE•ýRE CAL ING TOE r S..c N IS THE MIAXIMUM .VALUE OF THE ITERATION 14O.EX4+ NZ,. " .. . * •++
'1 ~ ~~C NP - NS z- MA XIM"UM -VAL UE OF INDEX, I r ,P' . +

Is C IP MUST aE SET TO' .ZERO ON INITIAL CALL.TO ASSURt' A PROPER START". "' .

S; NS z 0 ".
•.NP z 40 "
[ .1 SNEW a C.0 .

20 ENEM a 0.0RNEW a 0.0
W10 RITE(6910101

"•101 FORMAT(49HIEVEN ORDERED EPSILONS AND RECIPROCAL DIFFERENCES)
11 WRITE (6, 1011)

25 1011 FORMAT(59N SEQUENCE SN 1 SUN(1/N.2).,,.,((PI)'2)/6 * 1.6494934066
1646)

12 WRITE(6,13LZ)
012 FORNAT(39HOEVEN ORDER s 2K FOR IP 2K*1 AND ZK+2//3H Pp20X,SHlNP

IUT ,18X,?HEPSILONZ2X93HRHO/):1 30 00 NZ z 1,NP

COLO 2 ENEW
ROLO a RNEM
SOLD = SNEW

20 CALL SEQU(NZSOLDSNEW)
35 IF(NZ .LE* NS) GO TO 50

SN a SNEW
25 CALL EVEPS(SNEPIPNSIR)

CALL EVRHO(SNRHIPNSIR)
"ENEW t EP

40 RNEW = RH
IF(IR .EQ. 1) GO TO 100

30 WRITE(6,1030) IPSNEPRH
1030 FORMAT(1H ,1203E25.14)

50 CONTINUE
45 100 WR ITE (6pl0)

1100 FORNAT(9HOFINISHED)
STOP
END
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ýI48ROUTIN IE E .VEPS TSI73/1 OP 1T=O ROUNDS. -4/ 1944:, F.ýýN 4.64 . 20

SU BROU TI NE EVEPS(SNVEPIPNSRV

'EVEPS COMPUTES AN ARRAY OF EvEN ORDERED EPSILONS, Riflt) FOR.A4
C G.IVEN.SEdUENCE, SN, USING THE RECURSION RELATION GIVEN'BY.PETER WYNN

C (NUM MATH 0 (1966) 264-269)

C

C IF *MAXsISNTHE HIGHEST ORDERE(5sREG0),IPRO DIFFRENC DESIRED,'

C THEN THE DIMENSION OF THESE ARRAYS M4UST BE- AT LEAST, KNAX+

0 THE HIGHEST ORDER OF EPSILON CALCULATED &NO SENT' TO OUTPUT IS4
c 2K FOR IP 2K41 AND 20*2.

C

IR =0
C IR IS AN ERROR INDICATOR OHICH IS SET TO 1 IN CASE OF PENDING

C DIVISION BY ZERO. IT MUJST BE TESTED AND PROPER ACTION TAKEN IN

26 ~ C THE CALLING PROGRAM.

TOL = 1.OE-14

1o IP =IP+

IF(IP-2) 12,11,20

12 R2 (1) = SN

112(1) 0.0

~ IGO TO 100
2L JMAX (IPII1)/2

IL30 Rill) =SN
Hl(I) 0.0
DO 25 J1,pJMAX
WS =Rl(J) - R2(J)
IF(ABS(Ws) .LT. TOL# GO TO 95

35 21 VI(J) z1.0/MS
WS = H2(j)
IF(J -EQ. 1) WS =0.0

23 H1(J*2.) = MS + V1(J) - V2(Jl
IF(ABS(H1(.J*1~ .LT. TOL) GO To 95

40 25 k1(J+1) =R2(J) *i.C/HI(J.1)
3C EP =RI(JMAX)
40 DO 43 JalJMAX

HZ(J) =HI(J)
r2Z(J) =RIIJ)

45 43 V2IJ) =V1(J)
GO TO 100

95 MRITE(6,1095) IP,J
1495 FORMAT(26HODIVISOR TOO SMALL AT IP ,113,6H, ,J sp12)

IR m1
50 100 RETURN

END
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"SUROUTZNE EVRHO 3/74. OPT- ROUNU+-*. 1 'ACE FYN 4.64420 ,

SUBROUTINE EVRHO(SNPRHII'0tNS*IR)
•~~ ~ ~ .. = EVRH"O COMPUTES" AN ARRA OR EVEN ORDERED R•ECIPROCAL I•" FFERENCES* '•/

• C ERHI to FOR A GIVEN SEQUENCE, SN, USING A RECURSION RELATION ANALOGOUS
c TO THAT' GIVEN BY PETER WYNN FOR THE EPSILO ARRAY AND THE PAGE TABLE.
C (NUN tlATH 8 (1966) 264-29)-

DIMENSION HI(SG),H2(50),AIMS) 0R2(`50,1 9050) 2(s0)
C IF iKHAA'X IS THE HIGHEST ORDERED RECIPROCAL DIFFERENCE DESIRED,

10 C THEN THE OINENSION OF THESE ARRAYSNUST"'Bt AT, LEAST KNAX * -'

C TH'E HIGHEST ORDER RECIPROCAL DIFFERENCE CALCULATED rAND SENT TO.OUTPUT IS

C 2K FOR IP a 2K#I AND 2K+2.

1s C IP MUST BE SET TO ZERO ON INITIAL CALL TO ASSURE A PROPER START.

IR
C IR IS AN ERROR INDICATOR WHICH IS SET TO I IN CASE OF FENDING ."
C DIVISION BY ZERO. IT MUST BE TESTED AND PROPER ACTION TAKEN IN

20 C THE CALLING PROGRAM.

TOL • 1.L-1 
"

"IF(IP-Z 2,1 ,0 J....

It V2(1) a 1.0/(SN - RZ(1))
.25 12 R2(1) = SN

H2(1)z4.
GO TO 100

20 JMAX (IP#I)#2

RIMl a SN
00 25 J=LJMAX
MS x RI(J) - R2(J)

IF(ABS(WS)'.,LT. TOL) GO TO 95
21 V1(J) = (1J-1)/NS

IF(J .EQ. 1) MS z 0.0
23 H11iJ1) = MS + Vi(J) - VZ(J)

IF(ABS(HI(J*i)) .LT. TOL) GO TO 95
25 Rt(J*1) = R2(J) + (2*J)/H1(J1)

40 30 RN x RI(JMAX) -
40 00 43 J:lpJNAX

H2(J) z Hi(J)
R21J) aRt(J)A

43 VZ(J) = VI(J)
45 GO TO 100 I

95 NkITE(6,tc95l IPIIJ :

1095 FORMAT (6HODIVISOR TOO SHALL AT IP ,913N6HP J S#12)
IRz I

100 RETURN
so END
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SUAROUTI HE TANDEM 731~' ?4~ ON~.' RC FIN ~4.b4A$?

iii .I SlIIROUTINE TANOrMlSNEP*RHIPIft)
C
C TANDEM COMPUTES 14O ARRAYS SIMULTANEQUSLYj FROM ;. GIVEN INPUT SEQUENCE#

. C SM,. EVEN ORCERfD EPSILONS IN RE1. ARE GOMOUTED 6,SING A RECURSION
C RELAfI ON GIVEN Pv PETEr, WYNN4 FOR THE EPSILON ARRAV AND, PAOE TAKLE.
C (NUM MAIN 8 (J-966) 264.-269p
C EVEN OROEkEO RE,-IPROCAL DIýF-qNCES IN RkU ARE COMPUTEC USING AN
C ANALOGOUS RECURSION RELATI DEVELOPED BY R. P. EDDY.ý AUNPUB&.1SMED)

to DI MENSION HEI(SC).'NE2 (5O)) RE1950), RE2(601V VE~1A50- VE2190)
DIMENSION KRI(SO)v R2(50i, R:1(SOI RR2(SO19 VR1450)q VKZ(50)

C LET NO+ BE THE 0DIMENSION OF THESE ARRAYSi AND LET .2*KNAX BE. THE
I's + C HIGHEST ORDERED EPSILON ANDOIORRECIPROCAL DIFFERENCE U(:SikLD.

C THEN NO .GE. KMAX#1
C FURTHERMORE, MA9 IP =NP-.NS =2*MMAK.? *LE. 2'NO
C, EXAMPLE... NO A 0p?, 2fI1AX 936, MAX '.IP x0,.N 100, NS 0Q

20 .. C CONVERSELY, FOk A GIVEN IP, TKCE'4L*EST O1WER OF EPSILCN ANDIOR
C RECIPROCAL OIFFERFtPCE CAL(ULAýTEO AND SENT TO OQTR.UT 1,S 4

C 2K FOR IP =2K+1 AND 2.X.2.
C.
C IP MUST 8E SkYTf0) ZERO ON INIXOAL CALL 00 ASSURE A PkuPER, START,

25 C

KC IR IS AN ERROR I NOICATOR hHICH IS SE T' TO;.% IN LASE OF, FENDING .'

C 01 VISION BY ZER7. IT MOUT OE TEFSTLO AND PhtOPL~. ACTIOtN tAKEN IN
C THE CALLING PROGRAM.

30 C
'TOL 1.OE-0'.

::VE(1 1.0.4 (SN -RE2()IH

12 RE241) x SN
RR2(tl SN
HEZ?(i) 0.0
HR2(11 0.0

4.0 GO TO 100
2C JMAX =(lPti)/2

REI(l) =SN
* RRI(1) -SN

HEllo) 0.0J
'.5 HRI(J) C . j

00 ?5 J=1,JMAX
WE = EI(J) - kE2(J)

7 WR x RRI(j) - RQ2tJ)
IF(ABS(WE) .LT. TOL .OR. A1bS(bkk) LT1. TOt) GO TO 4j

50 21 VEI(JI 1.3/NE
VRI(J) (Zfj-1)/WR
WE= HE2(J)

WR =HR2 (J)
IF(J *NE. 1) GO TO 21

55 WE 0.0
-R 0.0

23 HEI(J.1) zWE *VEI (j) -E '1(J)

39



SUBROUTINE TANDEM 73/id. OP~inG RQUNOa*-'# TRACE FYN 4,6*d.2,

HR1I(J+L) WA~ + VRIWIJI V$RZ(j)
IF(A8S(HE1(J#l)) *LT. TOL -OR* ABS(HRI(J.±)) *LT. TOLI GO TO 95:160 REI(Joll x RE2(j) + 1mC#fHE1(J#1)

25 RRIIJ$1) a RR24J) + 42*j)/Hlft1iJ#1
30 EP - RE1(JNAX)

RN z RRM(JAX)
040 +00 '.3 JZlJNAX

65 HE24j) a HEM)J

NRE201 HRI(J)ii .RE(JI a RRI(J)

VE2IJ) a VEI4J)
70 #43 VRZ(J) 2 VKitt4J)

GO To 100
95 WRITE(6,1095) IP,J

1 09 5 FORMAT(Z6NOOI VISOR TOO SMALL, AT IP =,16H j.*2)

r 1 510C RETURN[ END
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SUBROUTINE SEQU ?301 V OPinG ROUN~s"-'# TRACE PIN 4.6*'.2O

1 SUSROUTINE SEQU(NZ*S.ODSNEW)
C CALCULATION OF SEQUENCE (1~i/N3"*Nt THE LIMIiT OF RHICH IS
C E a 2*?1S2S8l2GlsS90I3**o**
C

5 ~PRO = .0 '
FAC a 41.0 # I.$ mz)
00 10 NwlNZ1 010 PRO; PROOFAC

INW R

1010RETR
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SU•ROUTINE SEQU 73174 OPT=O FOUNOa*-*/ TRACE FTN 4.644.20 01/14/77

SUBROUTINE SEGU(N~tSOLOsSNEW*SW)
C PARTIAL SUMS OF SUM(((-1)ff(N-i))/N ..... LN(2) a 0.69314?1bO559g45.,.o
C SW IS SWITCH TO EFFECT ALTERNATING SIGN IN SUMMATION*

l.C SW a -SW
5 11 SNEW = SOLO . SW/NZ

10C RE TURN
E4D
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SUBROUTINE SEQU ?3/?4 OPTinG ROUNOa*-*/ TRACE FTM 4o6*I.!O

I SUBROUTINE SEQU(NZSOLO*SNEW)
c PARTIAL SUMS SN a SUM(I/N4021 FROM3.1 TO NZ.
C LIMIT IS £PZ*42)/6 - 1.644d93 40.U68 48...
C

9 10 SNEW a SOLD * .GINZ**2

END
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SUBROUTINE SEQU ?3/?'. OPTmu ROUNOa#.*/ TRACE FTN '.4a6+420

I . SUBROUTINE SEQU4N29SOLOiSNEWl
C ASYMPTOTIC TURING CONDITION NUMBER OF LEADING SEGMENTS OF THEf Ii
C HILBERT NATRIE....EEXP(3.5?5'M)

DIMENSION ELMX0410)
s ~ ELI k( i - t.

kELMXI 2) a 12.
L ELMX( .3) a 1932.

ELMX ( 4) a 4.
ELMX( S) a 09200.

to ELMX( 61 a 4400.i.OOO
ELNX( ?) JR 1334.0*960.
ELMX( B) a 42499.41696.
EL MX 9) a 12236?'.'.5IO. i
ELMXflQ) m34806?3996800!o

10RETURN

iEND
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SUBROUTINE SEQU 7~3i'74 OOT20 ROUNU&+-'/ TRACE FTN 4o6*42J

SUBROUTINE SEQU(N~vSOLflSNEW) .
C ASYMPTOTIC SPECTRAL CONDITION NUMBER OF LEADING SEGMENTS OF THE
C ILBERT MATRlXso.**..XP(3*SZS*N)

OIMENSION EIL1IO) ti01FVLN 410)

tiVLI( 2) c2.0/3 *t- cu3Ql
EVLI( .3) a .4.0e316927023? ED
MillE 4) * 1.500214.2600592 ED
EVLl( 5) x 1.56?CS06910982 EQ

1e EVLI( 6W = L.6188998569243 EQ
EVLI( ?) z 1.e66088653389269 E3
EV~lt (8) a 1. 695 93 8996 9219 E 0
EVLI( 9) =1. ?2`5 826639018 E 0

15 EVLN( 1) z i.0

EVINI Z) 2 20llog - (SORT(13.01)h6*0
EVLNI 3) = 2.bd?3403557735 E-03
EVLN( 4) = 9.6?C2304022587 E-OS
EVLN( S) z3.2879287721719 E-06

20 EVLNf 6) a .08279948456S6 E-0?
EVLN( 7) =3.1#938986059912 E-09
EVLN( 8) 1.1115389663?24 E-iO
EVLN( 9) 3.'.936764OZ9115 E-12
EVLN410) 1.0931538193797 E-13

25 IC A = (EVL1(NZ)*EVLN(NZ-1))#(EVLN(NZ)*EVL1(NZ-1))
11 SKEW ALOG(Al

100 RETURN
END0
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APPENDIX B

SAMPLE OUTPUT

Output pages show the performance of EVEPS and EVRHO on each of the sequences

given in Appendix A. The first three sequences are well known, as are their limits:

(1) e - 2.71828 18284 59045

(2) ln2 - 0.69314 71805 59945
(3) W2/6 - 1.64493 40668 48226

24(4) Following Todd one can show that, for large n, the Turning condition

number of leading segments of the Hilbert matrix is asymptotically

CT ~ (1/4w 2V) EXP(nB)

where

B - 21n ((/r+1)/(/2-1)) a 3.525496'

This B is the limit of the sequence s
n

,(5) It is conJecturable that, asymptotically, the spectral condition number is

the same as the Turning condition number for leading segments of the Hilbert
, matrix. This seems to be borne out by numerical evidence from the even-rho

algorithm.
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EVIEN ORDEV(EOýEPSILONS AND RECIPROCAL DIFFERENCES
SEQUEN'CE SN i UI~#z...~x4a/ .644934O66848;ta
EVEN ORDER 22K FOR IP =2X~1 AND 2K+2

IP INPUT EPSILON RHOL
1 *10a000aaoa40oaE+j0l 00 0. ,2 al2 58OOOGOOOOOOE*0i 0. 03 .13 6lli11111±iiE+01 0.l45 9 000000000E01.oI*,0O~ffOOEa4 .i'.2 36111111111EC+613b2398EO *lG650 8253g0s204E+o
5 *14636111i111111E~f1 -15516.17.4402i5Oý+01 *16448948948949E+01e l4913aesassss9EgEl .lS71f?36,U854t5E+Of *144'e9225865511E~gio l~il? 9 7052151.2EO1 .15 9i3:0 i-4136~,1 S.E+ A *IG'4934376i237E'.ojo lS274220521542E~h± IS9S415W5415 GsIE 40i *it6443416S3?3 '9 eI5397677311665E+01 *16 090869062916E~oi ,*1644934064396 .7E+0±to *15 49 7677311665E+01 -161447429516sQE+01 a1494629EIt e 1558 032193c?;?65E+01 e 161 96 09913902A.E*Oi *16449340673u4igE+Oi12 eLS6 49766384209E+os, *16229152906156E+01 *1644934066562?Eji

13 ±Sg'g3~aI42 ~ *1.6260947416967E+0 1GA 3±B 4 0 6406913 5 E f 0L4 *15759958390005EVOI - 1 62SZ682200907E.O± *16449340667654E+oi15 *15I8O4402834a.50E+01 e 16 3037255238 74E +01 1164493 40669994E+01L6 * 
1 58 4 34 6S334450E+01 *16 3 l0 ?7l932900E+01 . I6 4 4 9 3 40668089E01o17 &l58?8C67a.±3574E+0I 0 163 3 3 452531,306E +01 * 164'934I666e4i8E+0118 .± 5 9 08 9316o8±OSE+al e 16 3 4 4173994823E+01 a 164'.9340r666014E+Gi

19 *lS 9 3 6632439i3DE+Ol -P1 6 3 5 5339265028E+0j *l6449340668a.TOE+0120 *1 5 9 6 1 6 32439130E+01 *1 6 3 6 2ZS9559lhboE,01 *l 5 4' 9 340068394E~di21 olS 9S 4 30$1?6092E+01 el 6 3 6 8 6 9433Z669E+C± *I'449340668470't4;i22 * 1 6 0 04969333116E,01 *1 6 3 S?59724450'.E+01 .
1 64493406684.28E+CiF23 *16 023872924799E+gi *1 6 3 79 715464924E+ol e 16 4 49 3406684.B6E+014.24 *l 6 04 123 40359i0E,01 ot6371 .404.Tea.SBE+01 - 1644934di669OO4E+Ol25 *lBOS?23 4035gi0EO1 *16 3 7??1190?14?E+0.1 *16 4 4 934OB66476E+o±26 *IB?07262635318E.01L *16 3S 53?4869639E+ol * lG'44334G06El818E+QL

27 *l16OSS744356443E+01 I163b67qj'2S965soE+OI l49466u6EO28 *16098499458484E+hl .16 3 0S9?34.25764.E+Q *14940646E
29 *16 1lO 390064905E+01 016 386565862394E+1.E -16 44934066864.aE+0130 *-fl6 ZOIS0176G~±6E*G± -1638S434.6t0996E+0t , 16 449340668429E.Oi31 -161 31907003279E+01 *l6 3 95 586315824E+01 . .164'.9340668462E+ai32 *l6t41672628279E+0l .16 3937343647r34Ego1 e 164 4934 06584 62E+ 01333 o1lbI085536*.73SE+O± *1 6 394875100907E+01 .15 41 93406681.62E+01.3i *l15I950SO83766E+01 .16406986fO3153?EJi *lf449340668519E+cJi35 e16167669149072E+o1 * 164.101618 62069E+a 01 l 1 4 49340668u.62E+0136 * i6l?5365198E.55E,01 - 16 4 064070 7841'4E+01 a'1G4 4 9 3 4066e465E~o13? . 1 6 18 2 68'j800354E~g1 e16 41.O147089310Eý11 * 16 4 49 340668492E+0138 *1618961;gagl10E+hl *1 6 4OZ954576813Eeo± -1644 9340666464E+ 0139 *I196106963uC69E+01 *lB'.04S72'88894E+01 .16449'34 0668463E+ ot48 *i6ZO2439630069E~o1 e 1639704822962 OE ,a± eli449 31.0668465E+01
FINISHED
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